More Sorting

Discussion 12

5o
CS61B Spring 2024 \ 2

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

4/15
Project 3A due

4/22
Project 3B/C due

CS61B Spring 2024

Content Review

)
CS61B Spring 2024 N

Some radix vocabulary

A radix can be thought of as the alphabet or set of digits to choose from in some system. Properly, it is

defined as the base of a numbering system. The radix size of the English alphabet is 26, and the radix size of
Arabic numerals is 10 (O through 9).

Radix sorts work by using counting sorts to sort the list, one digit at a time. This contrasts with what we've
learned with comparison sorts, which compares elements in the list directly.

CS61B Spring 2024 \d

LSD Radix Sort

LSD sorts numbers by sorting them by digit from lowest digit to largest digit. We'll see an example of this on
the worksheet.

120
923
112
342
199

General Runtime: ©(W(N + R)), where:

e W =width of longest key in list
e N =#elements being sorted
e R=radixsize

CS61B Spring 2024 \d

LSD Radix Sort

LSD sorts numbers by sorting them by digit from lowest digit to largest digit. We'll see an example of this on
the worksheet.

120
923
112
342
199

CS61B Spring 2024 \d

LSD Radix Sort

LSD sorts numbers by sorting them by digit from lowest digit to largest digit. We'll see an example of this on
the worksheet.

120 120
923 112
112 -» 342
342 923
199 199

CS61B Spring 2024 \d

LSD Radix Sort

LSD sorts numbers by sorting them by digit from lowest digit to largest digit. We'll see an example of this on
the worksheet.

120 120 112
923 112 120
112 -» 342 -~-> 923
342 923 342
199 199 199

CS61B Spring 2024 \d

LSD Radix Sort

LSD sorts numbers by sorting them by digit from lowest digit to largest digit. We'll see an example of this on
the worksheet.

120 120 112 112
923 112 120 120
112 -» 342 -~-» 923 - 199
342 923 342 342
199 199 199 923

CS61B Spring 2024 \d

LSD Radix Sort

LSD sorts numbers by sorting them by digit from lowest digit to largest digit. We'll see an example of this on
the worksheet.

120 120 112 112
923 112 120 120
112 -» 342 -~-» 923 - 199
342 923 342 342
199 199 199 923

General Runtime: ©(W(N + R)), where:

e W =width of longest key in list
e N =#elements being sorted
e R=radixsize

CS61B Spring 2024 \d

MSD Radix Sort

MSD sorts numbers by sorting them by digit from largest digit to smallest digit. We'll see an example of this

on the worksheet.

General Runtime: O(W(N + R))

120
923
112
342
199

CS61B Spring 2024 \d

MSD Radix Sort

MSD sorts numbers by sorting them by digit from largest digit to smallest digit. We'll see an example of this

on the worksheet.

120
923
112
342
199

CS61B Spring 2024 \d

MSD Radix Sort

MSD sorts numbers by sorting them by digit from largest digit to smallest digit. We'll see an example of this

on the worksheet.

120
923
112
342
199

CS61B Spring 2024 \d

MSD Radix Sort

MSD sorts numbers by sorting them by digit from largest digit to smallest digit. We'll see an example of this

on the worksheet.

120
923
112
342
199

CS61B Spring 2024 \d

MSD Radix Sort

MSD sorts numbers by sorting them by digit from largest digit to smallest digit. We'll see an example of this

on the worksheet.

General Runtime: O(W(N + R))

120
923
112
342
199

CS61B Spring 2024 \d

Quicksort - More review

3 Way Partitioning or 3 scan partitioning is a simple way of partitioning an array around a pivot. You do three
scans of the list, first putting in all elements less than the pivot, then putting in elements equal to the pivot,
and finally elements that are greater. This technique is NOT in place, but it is stable.

312514

CS61B Spring 2024 \d

Quicksort - More review

Hoare Partitioning is an unstable, in place algorithm for partitioning. We use a pair of pointers that start at the
left and right edges of the array, skipping over the pivot.

The left pointer likes items < the pivot, and the right likes items > the pivot. The pointers walk toward each
other until they see something they don'’t like, and once both have stopped, they swap items.

Then they continue moving towards each other, and the process completes once they have crossed. Finally, we
swap the pivot with the pointer that originated on the right, and the partitioning is completed.

312514

Link to Hoare partitioning demo used in lecture

CS61B Spring 2024 \d

https://docs.google.com/presentation/d/1DOnWS59PJOa-LaBfttPRseIpwLGefZkn450TMSSUiQY/pub?start=false&loop=false&delayms=3000&slide=id.g463de7561_042

Comparison Sorts Summary

Best case

Selection Sort | O(N?)

Insertion Sort O(N)

Heapsort O(N)
Mergesort O(NlogN)
Quicksort (w/ O(NlogN)
Hoare

Partitioning)

Comparison sorts cannot run faster than ©(NlogN)! What about counting sorts?

Worst case

Stable?

no
yes
no

yes

no (usually)

In Place?

yes
yes
yes
no (usually)

yes (logN
space)

CS61B Spring 2024 \d

Worksheet

)
CS61B Spring 2024 N

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot: 18

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, ,]
Pivot: 18
[1

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]
Pivot: 18

[18 18 _ _ _ 1]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]
Pivot: 18

[18 18 22 34 99]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]
Pivot:

[

Pivot:

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4

Pivot: /7

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11

Pivot: /7

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4

Pivot: /7

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4

Pivot: /7

[7 11]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18
Pivot:

[4 7 11]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot: 18

[7 11 4 18 18
Pivot: N/A

[4 7 11 18 18]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot:

[4 7 11 18 18]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot: 22

[4 7 11 18 18]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot: 22

[4 7 11 18 18 22 1

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot: 22

[4 7 11 18 18 22 34 99]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot:

[4 7 11 18 18 22 34 99]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot:

[4 7 11 18 18 22 34 99]
Pivot: 34

[34 99]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot:

[4 7 11 18 18 22 34 99]
Pivot: 34

[34 99]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot: 18

[7 11 4 18 18 22 34 99]
Pivot:

[4 7 11 18 18 22 34 099]
Pivot: 34

[34 99]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot:

[4 7 11 18 18 22 34 99]
Pivot: 34

[34 99]

CS61B Spring 2024 \d

1A QU |CkSO rt Show the steps of running quicksort on the list below, selecting the
first item as the pivot and using 3 way partitioning.

[18, 7, 22, 34, 99, 18, 11, 4]

Pivot:

[7 11 4 18 18 22 34 99]
Pivot:
[4 7 11 18 18 22 34 99]
Pivot:

[4 7 11 18 18 22 34 99]

CS61B Spring 2024 \d

1B Quicksort

What is the best and worst case running time of Quicksort with Hoare Partitioning on N elements? Given the
two lists [4,4,4,4,4]and [1, 2, 3, 4, 5], assuming we pick the first element as the pivot every time, which list
would happen to result in better runtime?

Best case:

Worst case:

CS61B Spring 2024 \d

1B Quicksort

What is the best and worst case running time of Quicksort with Hoare Partitioning on N elements? Given the
two lists [4,4,4,4,4]and [1, 2, 3, 4, 5], assuming we pick the first element as the pivot every time, which list
would happen to result in better runtime?

Best case: @(Nlog N) on [4, 4, 4, 4, 4]

Worst case: ©(N?) on[1, 2, 3,4, 5]

CS61B Spring 2024 \d

1C Quicksort

What are two techniques that can be used to reduce the probability of Quicksort taking the worst case
running time?

CS61B Spring 2024 \d

1C Quicksort

What are two techniques that can be used to reduce the probability of Quicksort taking the worst case
running time?

1. Randomly choose pivots.

2. Shuffle the list before running Quicksort.

CS61B Spring 2024 \d

2A Rad iX SO I‘tS Sort [30395, 30326, 43092, 30315] using LSD Radix sort.

30395 30326 43092 30315

CS61B Spring 2024 \d

2A Rad iX SO I‘tS Sort [30395, 30326, 43092, 30315] using LSD Radix sort.

30395 30326 43092 30315
1 43092 30395 30315 30326
2
3
4
5

CS61B Spring 2024 \d

2A Rad iX SO I‘tS Sort [30395, 30326, 43092, 30315] using LSD Radix sort.

30395 30326 43092 30315
1 43092 30395 30315 30326
2 30315 30326 43092 30395
3
4
5

CS61B Spring 2024 \d

2A Rad iX SO I‘tS Sort [30395, 30326, 43092, 30315] using LSD Radix sort.

30395 30326 43092 30315
1 43092 30395 30315 30326
2 30315 30326 43092 30395
3 43092 30315 30326 30395
4
5

CS61B Spring 2024 \d

2A Rad iX SO I‘tS Sort [30395, 30326, 43092, 30315] using LSD Radix sort.

30395 30326 43092 30315
1 43092 30395 30315 30326
2 30315 30326 43092 30395
3 43092 30315 30326 30395
4 30315 30326 30395 43092

CS61B Spring 2024 \d

2A Rad iX SO I‘tS Sort [30395, 30326, 43092, 30315] using LSD Radix sort.

30395 30326 43092 30315
1 43092 30395 30315 30326
2 30315 30326 43092 30395
3 43092 30315 30326 30395
4 30315 30326 30395 43092
S) 30315 30326 30395 43092

CS61B Spring 2024 \d

2B Radix Sorts sort [21295, 22316, 30753, 21248, 30751] using MSD Radix sort.

21295 22316 30753 21248 30751

CS61B Spring 2024 \d

2B Radix Sorts sort [21295, 22316, 30753, 21248, 30751] using MSD Radix sort.

21295 22316 30753 21248 30751
1 21295 22316 21248 30753 30751
2
3
4
5

CS61B Spring 2024 \d

2B Radix Sorts sort [21295, 22316, 30753, 21248, 30751] using MSD Radix sort.

21295 22316 30753 21248 30751
1 21295 22316 21248 30753 30751
2 21295 21248 22316 30753 30751
3
4
5

CS61B Spring 2024 \d

2B Radix Sorts sort [21295, 22316, 30753, 21248, 30751] using MSD Radix sort.

21295 22316 30753 21248 30751
1 21295 22316 21248 30753 30751
2 21295 21248 22316 30753 30751
3 21295 21248 22316 30753 30751
4
5

CS61B Spring 2024 \d

2B Radix Sorts sort [21295, 22316, 30753, 21248, 30751] using MSD Radix sort.

21295 22316 30753 21248 30751
1 21295 22316 21248 30753 30751
2 21295 21248 22316 30753 30751
3 21295 21248 22316 30753 30751
4 21248 21295 22316 30753 30751

CS61B Spring 2024 \d

2B Radix Sorts sort [21295, 22316, 30753, 21248, 30751] using MSD Radix sort.

21295 22316 30753 21248 30751
1 21295 22316 21248 30753 30751
2 21295 21248 22316 30753 30751
3 21295 21248 22316 30753 30751
4 21248 21295 22316 30753 30751
) 21248 21295 22316 30751 30753

CS61B Spring 2024 \d

2C Rad IX SO rtS Find the best case runtime, worst case runtime, and stability of MSD and

LSD Radix Sort. Assume that we have N elements, a radix R, and a maximum number W of digits in an
element.

Best Time Complexity | Worst Time Complexity | Stable?
LSD Radix Sort

MSD Radix Sort

CS61B Spring 2024 \d

2C Rad IX SO rtS Find the best case runtime, worst case runtime, and stability of MSD and

LSD Radix Sort. Assume that we have N elements, a radix R, and a maximum number W of digits in an
element.

Best Time Complexity | Worst Time Complexity | Stable?
LSD Radix Sort | ©(W(N + R)) OW(N + R)) yes

MSD Radix Sort | ©(N + R) OW(N + R)) yes

CS61B Spring 2024 \d

2D Radix Sorts

We just saw above that radix sort has good runtime with respect to the number of
elements in the list. Given this fact, can we say that radix sort is the best sort to use?

CS61B Spring 2024 \d

2D Radix Sorts

We just saw above that radix sort has good runtime with respect to the number of
elements in the list. Given this fact, can we say that radix sort is the best sort to use?

No: Though radix sort runs linear with respect to the number of elements in the list, the
runtime also depends on the size of the radix R and the length of the longest “word” W
(or the number of digits in a number). Additionally, it is not always possible to use radix
sort, because not all objects can be split up into digits.

CS61B Spring 2024 \d

3A Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
12, 7, 8, 4, 10, 2, 5, 34, 14
7, 8, 4, 10, 2, 5, 12, 34, 14

4, 2, 5, 7, 8, 10, 12, 14, 34

CS61B Spring 2024 \d

3A Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
12, 7, 8, 4, 10, 2, 5, 34, 14
7, 8, 4, 10, 2, 5, 12, 34, 14
4, 2, 5, 7, 8, 10, 12, 14, 34

Quicksort, using the first element as a pivot.

CS61B Spring 2024 \d

3B Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
23, 45, 12, 4, 65, 34, 20, 43

4, 12, 23, 45, 65, 34, 20, 43

CS61B Spring 2024 \d

3B Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
23, 45, 12, 4, 65, 34, 20, 43
4, 12, 23, 45, 65, 34, 20, 43

Insertion Sort.

CS61B Spring 2024 \d

3C Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
12, 32, 14, 11, 17, 38, 23, 34

12, 14, 11, 17, 23, 32, 38, 34

CS61B Spring 2024 \d

3C Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
12, 32, 14, 11, 17, 38, 23, 34
12, 14, 11, 17, 23, 32, 38, 34

MSD Radix Sort.

CS61B Spring 2024 \d

3D Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
45, 23, 5, 65, 34, 3, 76, 25
23, 45, 5, 65, 3, 34, 25, 76

5, 23, 45, 65, 3, 25, 34, 76

CS61B Spring 2024 \d

3D Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
45, 23, 5, 65, 34, 3, 76, 25
23, 45, 5, 65, 3, 34, 25, 76
5, 23, 45, 65, 3, 25, 34, 76

Merge Sort.

CS61B Spring 2024 \d

3E Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
23, 44, 12, 11, 54, 33, 1, 41
54, 44, 33, 41, 23, 12, 1, 11

44, 41, 33, 11, 23, 12, 1, 54

CS61B Spring 2024 \d

3E Sorting: Identification

Determine what sorting algorithm results in these intermediate steps.
23, 44, 12, 11, 54, 33, 1, 41
54, 44, 33, 41, 23, 12, 1, 11
44, 41, 33, 11, 23, 12, 1, 54

Heapsort.

CS61B Spring 2024 \d

4A Conceptual Sorts

Give a 5 integer array that elicits the worst case runtime for insertion sort.

CS61B Spring 2024 \d

4A Conceptual Sorts

Give a 5 integer array that elicits the worst case runtime for insertion sort.

54321

CS61B Spring 2024 \d

4B Conceptual Sorts

Why would someone choose mergesort over quicksort?

CS61B Spring 2024 \d

4B Conceptual Sorts

Why would someone choose mergesort over quicksort?

The worst case runtime of mergesort is ©(NlogN), while quicksort is ©(N*2). Additionally,
mergesort is stable while quicksort is not.

CS61B Spring 2024 \d

4C Conceptual Sorts

Which sorts do each of the following statements describe?
Bounded by Q(NlogN) lower bound:
Worst case runtime is asymptotically better than Quicksort’s worst case runtime:
In the worst case, performs ©(N) pairwise swaps:
Never compares the same two elements twice:

Runs in best case O(logN) for certain inputs:

CS61B Spring 2024 \d

4C Conceptual Sorts

Which sorts do each of the following statements describe?
Bounded by Q(NlogN) lower bound: A, B, C
Worst case runtime is asymptotically better than Quicksort’s worst case runtime: B, E
In the worst case, performs ©(N) pairwise swaps: C
Never compares the same two elements twice: A, B, D

Runs in best case O(logN) for certain inputs: F

CS61B Spring 2024 \d

